nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv searchzone qikanlogo popupnotification paper paperNew
Abstract:

[Background]With the large-scale construction and increasingly integrated operation of metro networks, metro ridership has grown rapidly. Passenger travel demands and patterns have become increasingly complex and diverse, presenting new challenges for metro operations and management. [Objective] Leveraging the advantages of mobile signaling data in continuously tracking users' travel trajectories, metro travel episodes are identified on the basis of the layout and coverage of base stations within metro stations, combined with thresholds like travel activity time. Next, typical metro travel patterns are mined to support metro optimization. [Method] Based on the metro network topology model and Dijkstra algorithm, passenger travel paths are reconstructed to obtain detailed daily travel records. A two-step classification method is then employed to uncover the heterogeneity of passenger travel behavior. Specifically, the users are divided into high-and low-frequency groups on the basis of their travel frequencies. Subsequently, using indicators such as temporal regularity, spatial distribution, and route utilization, the K-means++ clustering algorithm is employed to further refine the segmentation of each group. [Data] The study uses mobile signaling data from Shanghai in May 2019, which include 400 million signaling records generated by 4.48 million metro users. [Conclusions] The analysis extracts 30.09 million metro trips from 3.83 million users. Highfrequency users(18% of the total) contributed 67% of all trips, whereas low-frequency users(82%)accounted for only 33%. High-frequency users can be classified into three groups: commuters relying on a single route, commuters with flexible route choices, and regular users traveling for noncommuting purposes. Low-frequency users can be classified into three categories: business, leisure and entertainment, and single-day or transit travelers. The findings can inform resource allocation, targeted marketing strategies, and help improve operational efficiency in metro systems.

References

[1]中国城市轨道交通协会.城市轨道交通2023年度统计和分析报告[R].北京:中国城市轨道交通协会,2024.

[2]上海市统计局. 2023年上海市国民经济和社会发展统计公报[R].上海:上海市统计局,2024.

[3]STEENBRUGGEN J, TRANOS E, NIJKAMP P. Data from mobile phone operators:a tool for smarter cities[J].Telecommunications Policy, 2015, 39(3/4):335-346.

[4]吴华意,胡秋实,李锐,等.城市人口时空分布估计研究进展[J].测绘学报, 2022, 51(9):1827-1847.WU Huayi, HU Qiushi, LI Rui, et al. Research progress on spatio-temporal distribution estimation of urban population[J]. Acta Geodaetica et Cartographica Sinica, 2022,51(9):1827-1847.

[5]WANG Z, HE S Y, LEUNG Y. Applying mobile phone data to travel behaviour research:a literature review[J].Travel Behaviour and Society, 2018, 11:141-155.

[6]JIANG S, FERREIRA J, GONZALEZ M C. Activitybased human mobility patterns inferred from mobile phone data:a case study of Singapore[J]. IEEE Transactions on Big Data, 2017, 3(2):208-219.

[7]刘振国,齐崇楷,王江锋,等.数据驱动的城市群综合运输通道识别算法与特征分析[J].交通运输系统工程与信息, 2025, 25(3):73-84.LIU Zhenguo, QI Chongkai, WANG Jiangfeng, et al. Data-driven identification algorithm and feature analysis of integrated transport corridors in urban agglomerations[J].Journal of Transportation Systems Engineering and Information Technology, 2025,25(3):73-84.

[8]郑成龙,宋辞,陈洁.基于手机信令数据的北京市长时间工作现象空间特征分析[J].地球信息科学学报,2025, 27(6):1317-1331.ZHENG Chenglong, SONG Ci, CHEN Jie. An analysis of spatial characteristics of long working hours phenomenon in Beijing based on mobile signaling data[J]. Geo-Information Science, 2025,27(6):1317-1331.

[9]ZHONG G, YIN T, ZHANG J, et al. Characteristics analysis for travel behavior of transportation hub passengers using mobile phone data[J]. Transportation, 2019, 46(5):1713-1736.

[10]HUANG H, CHENG Y, WEIBEL R. Transport mode detection based on mobile phone network data:a systematic review[J]. Transportation Research Part C:Emerging Technologies, 2019, 101:297-312.

[11]胡永恺.基于手机信令的轨道交通乘客出行行为分析方法研究[D].南京:东南大学, 2017.HU Yongkai. Urban rail transit passenger travel behavior analysis methods based on cellular data[D]. Nanjing:Southeast University, 2017.

[12]DENG Y, ZHAO P. The impact of new metro on travel behavior:panel analysis using mobile phone data[J].Transportation Research Part A:Policy and Practice,2022, 162:46-57.

[13]DUAN Z, LIU X, YU Q, et al. Analyzing detour behavior of metro passengers based on mobile phone data[J].Transportation Planning and Technology, 2022, 45(3):289-309.

[14]殷勇,鞠子奇,吴雨遥,等.国外轨道交通发展对我国城市群轨道交通一体化的启示[J].交通运输工程与信息学报, 2021, 19(1):52-58.YIN Yong, JU Ziqi, WU Yuyao, et al. The enlightenment of foreign rail transit development to the rail transit integration of China megalopolis[J]. Journal of Transportation Engineering and Information, 2021,19(1):52-58.

[15]刘梦琪,瞿何舟.基于轨道交通与常规公交组合的出行路径选择研究[J].交通运输工程与信息学报, 2018,16(4):63-68.LIU Mengqi, QU Hezhou. Study on the route choice using the combination of rail and bus transit[J]. Journal of Transportation Engineering and Information, 2018, 16(4):63-68.

[16]冉斌.手机数据在交通调查和交通规划中的应用[J].城市交通, 2013, 11(1):72-81, 32.RAN Bin. Use of cellphone data in travel survey and transportation planning[J]. Urban Transport of China,2013, 11(1):72-81, 32.

[17]李玮锋.基于移动通信数据的居民活动空间分析[D].上海:同济大学, 2018.LI Weifeng. Analysis on Individuals’Activity Space Based on Mobile Phone Data[D]. Shanghai:Tongji University,2018.

[18]WANG Y, DE ALMEIDA CORREIA G H, DE ROMPH E, et al. Using metro smart card data to model location choice of after-work activities:an application to Shanghai[J]. Journal of Transport Geography, 2017, 63:40-47.

[19]BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient[M]//Noise Reduction in Speech Processing. Berlin, Heidelberg:Springer Berlin Heidelberg,2009:1-4.

[20]WANG L, CHEN Y, WANG Y, et al. Identification and classification of bus and subway passenger travel patterns in Beijing using transit smart card data[J]. Journal of Advanced Transportation, 2023:6529819.

[21]NISHIUCHI H, KING J, TODOROKI T. Spatial-temporal daily frequent trip pattern of public transport passengers using smart card data[J]. International Journal of Intelligent Transportation Systems Research, 2013, 11(1):1-10.

[22]ARTHUR D, VASSILVITSKII S. K-means++:the advantages of careful seeding[R]. Stanford, 2006.

[23]SHAHAPURE K R, NICHOLAS C. Cluster quality analysis using silhouette score[C]//2020 IEEE 7th International Conference on Data Science and Advanced Analytics(DSAA). Sydney, Australia:IEEE, 2020:747-748.

Basic Information:

DOI:10.19961/j.cnki.1672-4747.2025.07.026

China Classification Code:U293.6

Citation Information:

[1]LIU Xiaolei,ZOU Guojian,DUAN Zhengyu ,et al.Individual-level metro route extraction and travel behavior pattern mining[J].Journal of Transportation Engineering and Information,2026,24(01):15-24.DOI:10.19961/j.cnki.1672-4747.2025.07.026.

Fund Information:

上海市“科技创新行动计划”社会发展科技攻关项目(20dz1202903)

Search Advanced Search

quote

GB/T 7714-2015
MLA
APA